söndag 15 februari 2015

Linjära funktioner

Räta linjens ekvation

Det har funnits önskemål om att jag ska filma och förklara räta linjens ekvation.



Så här kommer en liten film där jag går igenom vad man menar med räta linjens ekvation. Jag förklarar vad ett k-värde är och vad ett m-värde är.

Jag lägger också ut en film här där jag räknar igenom ett exempel på funktioner i verkligheten.



Räta linjens ekvation, klicka här!

Räknat exempel ( funktioner i verkligheten ), klicka här!


Funktioner i verkligheten


  • Kan vi med hjälp av en graf hitta sambandet mellan antal svarta och vita plattor?

  • Kan vi uttrycka sambandet med en funktion?

  • Beskriv funktion med ord.


Vi börjar med att rita ett koordinatsystem på rutat papper.






Generella lösningsstrategier:
  • Rita en figur
  • Sätta upp en tabell
  • Söka mönster
  • Gissa och prova
  • Lösa enklare problem av samma typ
  • Arbeta baklänges
  • Ställa upp en ekvation

 Testuppgift


Hur gammal blir en katt? 


En katt lever inte lika länge som en människa. Därför kan man säga att katten åldras
snabbare.
För att jämföra en katts ålder (antal kattår) med en människas ålder (antal år)
kan man använda olika modeller.

Modell A: Varje "människoår" motsvarar 7 kattår. 

Modell B: Första året motsvarar 15 kattår. 
              Andra året motsvarar 10 kattår. 
              Varje ytterligare år motsvarar 4 kattår. 



a) För tre år sedan fick Maria en nyfödd kattunge. Hur många kattår är hennes katt idag
enligt Modell A respektive Modell B?

 Rita  ett koordinatsystem med antal människoår på x-axeln
 och kattens ålder på y-axeln.

 Rita två grafer i ditt koordinatsystem,
en för Modell A och en för Modell B.



b) Efter hur lång tid ger de båda modellerna samma ålder på en katt? Bestäm detta så
exakt du kan.

c) Katter kan bli gamla. Det är inte ovanligt att de lever minst 20 år. Jämför de båda
modellerna när det gäller kattens livslängd (antal kattår). Vilken av modellerna är
mest rimlig? Motivera dina slutsatser.

 E: Du kan rita in rätt graf för någon av funktionerna och ge en enkel motivering.Du kan ange kattens ålder i a-uppgiften

C: Du kan korrekt rita båda graferna och tolka grafernas skärningspunkt rätt. Du kan ange ett rimligt värde vid skärningspunkten

A: Du kan analysera graferna och dra välgrundade slutsatser. Du kan ange ett exakt värde för skärningspunkten och motivera varför värdet är riktigt.
Du hanterar beräkningarna med stor säkerhet och de är tydliga och lätta att följa.

Film " Funktioner i verkligheten ", klicka på länken

Filmade räkneexempel från boken, klicka på länken

Inga kommentarer:

Skicka en kommentar